On Divisorial Submodules
نویسندگان
چکیده
منابع مشابه
Finite unions of submodules ON FINITE UNIONS OF SUBMODULES
This paper is concerned with finite unions of ideals and modules. The first main result is that if N ⊆ N1 ∪N2 ∪ · · · ∪Ns is a covering of a module N by submodules Ni, such that all but two of the Ni are intersections of strongly irreducible modules, then N ⊆ Nk for some k. The special case when N is a multiplication module is considered. The second main result generalizes earlier results on co...
متن کاملOn Unitarily Equivalent Submodules
The Hardy space on the unit ball in C provides examples of a quasi-free, finite rank Hilbert module which contains a pure submodule isometrically isomorphic to the module itself. For n = 1 the submodule has finite codimension. In this note we show that this phenomenon can only occur for modules over domains in C and for finitely-connected domains only for Hardy-like spaces, the bundle shifts. M...
متن کاملOn Divisorial Filtrations on Sheaves
A notion of Poincaré series was introduced in [1]. It was developed in [2] for a multi-index filtration corresponding to the sequence of blow-ups. The present paper suggests the way to generalize the notion of Poincaré series to the case of arbitrary locally free sheaf on the modification of complex plane C 2. This series is expressed through the topological invariants of the sheaf. For the she...
متن کاملDivisorial rings and Cox rings
1 Preliminaries on monoids Definition 1.1. An Abelian monoid is a set with a binary, associative, and commutative operation which has a neutral element. It will often be called just a monoid in this manuscript because we will not deal with non-commutative monoids. A monoid M is called • finitely generated if there is a finite set of generators, or equivalently if there is a surjection of monoid...
متن کاملOn the 2-absorbing Submodules
Let $R$ be a commutative ring and $M$ be an $R$-module. In this paper, we investigate some properties of 2-absorbing submodules of $M$. It is shown that $N$ is a 2-absorbing submodule of $M$ if and only if whenever $IJLsubseteq N$ for some ideals $I,J$ of R and a submodule $L$ of $M$, then $ILsubseteq N$ or $JLsubseteq N$ or $IJsubseteq N:_RM$. Also, if $N$ is a 2-absorbing submodule of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kyungpook mathematical journal
سال: 2015
ISSN: 1225-6951
DOI: 10.5666/kmj.2015.55.4.871